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a b s t r a c t

Satellite-based remote sensing presents a broad view of field scenes while ground-based

remote sensing offers detailed observation of the crop to support precision farming decision-

making. If it is possible to combine the advantages of both satellite-based and ground-

based sensing, the resulting imagery could present both the broad view of a field scene and

detailed observation of crop growth, which offers a very informative means for delivering

crop production information. This paper describes a fundamental investigation on creating

multi-spectral 3D panoramic field imagery by seamlessly integrating ground-based multi-

spectral images of the field. A vehicle-mounted stereovision sensor composed of two multi-

spectral cameras collects six-spectral channel images to form the multi-spectral 3D field

imagery. The collected stereo image stream is then synthesized progressively to create a
tereovision

round-based remote sensing

single seamless field image. The resulting panoramic imagery forms a 3D virtual field scene

capable of providing more informative interpretation of crop/field status than a 2D plane

image. Field test results proved that the assembled multi-spectral imagery was capable of

providing a seamless 3D panoramic view of a soybean field with a broad view for assessing

crop growth status with sufficient detail of individual crop plants.
. Introduction

mage-based remote sensing can remotely sense the prop-
rty of crops in the field by means of measuring spectral
eflectance from crop canopies. A remote sensing system can
cquire satellite, airborne or ground-based images relative to
he type of platform carrying the imaging sensor. The major
ifference of the three platforms is their viewpoint height,

hich dominates the spatial resolution and image field of

iew. Among the three types of images, satellite imagery has
he highest viewpoint. Hence, it covers the largest field of

∗ Corresponding author. Tel.: +1 217 333 9419; fax: +1 217 244 0323.
E-mail address: qinzhang@uiuc.edu (Q. Zhang).

1 Tel.: +1 706 546 3454; fax: +1 706 546 3633.
168-1699/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.compag.2007.07.002
© 2007 Elsevier B.V. All rights reserved.

view, but with the lowest spatial resolution in general. Nat-
urally, satellite-based remote sensing is often used for the
applications requiring wide area coverage but not high spatial
resolution, such as the classification of crop types (Maxwell
et al., 2004; Van Niel and McVicar, 2004) and the estimation
of spatial distribution of water content in the soil (Cashion
et al., 2004). In contrast with satellite imagery, ground-based
imagery offers high spatial resolution to make individual

leaves on a plant distinguishable, and therefore is suited for
applications requiring a plant-level spatial resolution. Exam-
ples of such applications are plant population counting and

mailto:qinzhang@uiuc.edu
dx.doi.org/10.1016/j.compag.2007.07.002
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weed mapping (Tillett et al., 2001; Shrestha and Steward,
2003). Furthermore, because ground-based vegetation indices
are not affected by the atmosphere, special indices can
be used that make use of information in wavelengths not
restricted to atmospheric windows (Datt, 1999). The major
drawback for ground-based sensing is its small field of view
that requires acquiring a sequence of images in order to
cover the large area. While airborne-based remote sens-
ing can provide a compromise between satellite-based and
ground-based imagery in terms of spatial resolution and field
coverage, professional service providers are required to fly
the aircraft for capturing field images, which often brings
additional costs, as well as the scheduling difficulties to
producers.

Ideally, a remote sensing image should have a wide view
to cover the entire field and have a high resolution to present
the growth information of an individual crop plant. Enhancing
image resolution and widening field of view simultaneously is
a trade-off problem for conventional remote sensing. However,
if it would be possible to obtain a stream of high resolution
images, such as a video sequence acquired from a ground-
based moving platform, and then subsequently merging those
images into one seamless image, a field image of unlim-
ited coverage with a high resolution would be obtained. In
this research, a ground-based remote sensing platform that
acquires a stream of multi-spectral 3D field images using a
vehicle-mounted stereo camera was developed. The objective
of this research was to develop a remote sensing system that
could provide information of the entire field with great detail.
More specifically, a field image of:

(1) a seamless panoramic view with high spatial resolution,
(2) three-dimensional (3D) information of plants,
(3) spectral reflectance in multiple bands.

was to be created by synthesizing ground-based images.
Regarding (1), image processing that stitches a stream of

images into an integrated panoramic image is called image
mosaicing. There have been several agricultural remote sens-
ing systems that mosaic multiple images together and create
a panoramic image reported previously, but most of them
are based on either aerial or satellite images with spatial
resolution up to a meter or greater, depending on altitude
(Wright et al., 2003; Thomson et al., 2005). In contrast, a typ-
ical ground-based imagery obtains spatial resolution on the
order of millimeters and requires more precision alignment to
create a seamless mosaic image as compared with the preci-
sion required for aerial or satellite image mosaicing. However,
it is worthy to be pointed out comparing to the capability of
acquiring a regional farmland remote sensing imagery by one
shot, the proposed method needs to take numerous shots
then integrate the individual images to form an complete
imagery for the field of interest, and this process is often time
consuming.

The image sensor installed on the ground-based plat-

form is a stereovision camera composed of two multi-spectral
cameras. A stereo camera consists of two identical cam-
eras with their optical axis being geometrically arranged in
parallel. A stereo image attains the 3D field scene informa-
g r i c u l t u r e 6 0 ( 2 0 0 8 ) 67–75

tion by means of taking the same field scene from slightly
offset viewpoints using two cameras. The additional dimen-
sion of the scene often provides some critical information
for many applications. Recently, successful applications of
using a stereovision system in agriculture have been reported,
such as stereovision-based tractor guidance (Kise et al., 2005),
crop and animal growth condition observation, and physi-
cal parameter estimation (Lines et al., 2001; He et al., 2003;
Rovira-Más et al., 2005), and livestock 3D shape extraction
(Wu et al., 2004). By taking advantage of stereovision, the
imaging system developed in this research can provide use-
ful 3D plant information, such as the height and volume of
plants along with the spectral reflectance, which satisfies sec-
ond the condition of the above list. A single lens camera or
spectral sensor has been traditionally used to obtain crop bio-
physical information; however, they can only estimate such
biophysical parameters from the sensor outputs (Goel et al.,
2003; Payero et al., 2004). Consequently, the outcomes obtained
from those traditional sensors are dependent upon many fac-
tors, such as the variety of the plant, local climate and field
management.

Finally, each camera consists of three charge coupled
device (CCD) sensors with different spectral filters, which
allows the system to capture field images in three spec-
tral bands. Because two cameras have different spectral
configurations, a composite image of two cameras contains
six-spectral channels. The spectral reflectance from the plants
can indicate plant growth status. Numerous indices have been
developed from various combinations of different bands of
reflectance for estimating vegetation and soil parameters,
such as nitrogen stress (Han et al., 2002), weed density (Bajwa
and Tian, 2001), and soil nutrient composition and texture
(Thomasson et al., 2001). This technology has also been used
in yield prediction (Yang et al., 2001).

The following sections introduce the experimental system
used in this research and development of a method for form-
ing panoramic imagery. The developed remote sensing system
was tested in the field to evaluate the precision of panoramic
field image creation.

2. Experimental systems

2.1. Multi-spectral stereo camera and test platform

The stereovision camera was composed of two multi-spectral
CCD cameras (MS-3100, Redlake Inc., San Diego, CA). Both
cameras have three high-resolution CCD imagers capable of
acquiring field images in three spectral bands, as shown in
Table 1. This configuration allows the stereovision camera
to capture field images in six-spectral bands from visible to
near infrared. Two cameras were aligned in parallel on the
frame with a 102 mm separation on their optical axes to form
a stereo camera. Both cameras were equipped with a 14 mm
lens (Sigma, Kawasaki, Japan). An external trigger signal was
used to control both cameras for synchronizing the image

acquisition timing. The pair of images were acquired using
two CameraLink frame grabbers (IMAQ PCI-1428, National
Instruments, Austin, TX) at 5 frames/s. Stereo computation
was performed on channel 2 of the left camera (CWL 537 nm)
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Table 1 – Spectrum configuration of the stereo camera

Channel number Left camera (MS3100 RGB) Right camera (MS3100 CIR)

Center wavelength (nm) FWHM (nm) Center wavelength (nm) FWHM (nm)

1 478 50 547.5 40
2 537 50 667.5 40
3 621 60 796 60
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Fig. 1 – Research platform.

nd channel 1 of the right camera (547.5 nm) since they were
he closest combination of wavelengths among all combina-
ions.

Fig. 1 shows that the multi-spectral stereo camera was
nstalled on a mobile research platform based on a high clear-
nce agricultural sprayer. The stereo camera was mounted on
camera frame in front of the platform 3.8 m above ground

evel and viewed downward with very small forward tilt angle.
his installation resulted in a field of view of 1.5 m × 0.8 m
bout 1.0 m in front of the platform. An RTK-GPS receiver
MS750, Trimble, Sunnyvale, CA), the measurement accuracy
f which was ±2 cm, was also installed directly over the cam-
ra to record the vehicle trajectory.

.2. 3D panoramic field image creation algorithm

reation of a panoramic field image is performed progressively
y stitching consequent images of a vehicle-mounted multi-
pectral stereo camera. Fig. 2 shows the basic procedures of 3D
anoramic field image creation. The first step was stereo pro-
essing that extracts three-dimensional (3D) information of
he field scene and registers two images of the multi-spectral
ameras for creating a six-spectral band image. It was fol-
owed by the feature point tracking, which involves detecting
oints that had distinctive features and then finding their cor-
espondences in adjacent images. Constituent images were
hen projected on the panoramic field image coordinates pro-

ressively based on the geometric relationship of the adjacent
mages calculated from the correspondence of feature points.
ll algorithms were developed in Microsoft Visual C++ envi-

onment.
Fig. 2 – Conceptual flowchart of panoramic image
formation algorithm.

2.3. Stereo computation

As the stereo geometry illustrates in Fig. 3, a stereovision
camera is a vision sensor consisting of two identical cameras
Fig. 3 – Principle of stereovision geometry.
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Fig. 4 – Example of stereovision-based image registration: (a) original left image; (b) processed left image; (c) original right
image; and (d) processed right image. In the original image pair ((a) and (c)), a slight offset between the two images can be
seen as indicated by the white line and circle; a dead plant in the circle of figure (a) is located left side of the line while same
dead plant is located right side of the line in the figure (c); however, the dead plant is perfectly aligned after image

registration shown in image (b) and (d).

the left camera coordinates can be uniquely determined from
their geometric relationship. Two original images can be regis-
tered by the stereo computation, as demonstrated in Fig. 4. In
the original image pair ((a) and (c)), a slight offset between two
images can be seen due to the lateral offset of the viewpoint
between the two cameras as indicated by the white line and
circle; a dead plant in the circle in figure (a) is located left side
of the line while the same dead plant is located on the right
side of the line in the figure (c). Fig. 4(b and d) show the left
and right images after stereo processing in which the images
are accurately registered relative to each other as can be seen
from the dead plants in the two images appearing in accurate
alignment.

2.4. Stereo image projection model for image
mosaicing

Recovering the changes of image geometry associated with
camera motion is essential for image mosaicing. If two images
are taken from the same viewpoint (but from different angles),
or if two images are taken from different viewpoints but
the scene is planar, the geometric relationship of those two
images can be described by a 2D linear projective transfor-
mation called planar homography (Szeliski, 1996). Assume a
given point in image frame 1, m1 = (x1, y1, w1)T, represent-
ing the same object image frame 2, m2 = (x2, y2, w2)T. The
points m and m are represented in homogeneous coordi-
1 2

nates and their corresponding Cartesian coordinates can be
represented by (x/w, y/w)T (Foley et al., 1990). The geomet-
ric relationship of those two points in planar homography
can be described by the following well known equation
(Faugeras, 1993):

⎛
⎝ x1

y1

w1

⎞
⎠ =

⎛
⎝ h0 h1 h2

h3 h4 h5

h6 h7 1

⎞
⎠

⎛
⎝ x2

y2

w2

⎞
⎠ (1)

One of the major challenges faced in this research was
that two images were taken from different viewpoints at non-
planar scenes due to the features of an agricultural field, which
made image mosaicing much more difficult than the methods
of Eq. (1) could accommodate. Such a feature was attributed
to the fact that the target scene in an agricultural field con-
tains voluminous 3D objects (such as crop rows) and that the
camera moves continuously within the field with both trans-
lational and rotational motions. To solve this problem, an
image mosaicing algorithm developed in this research used
the depth information at every pixel of the image. Based on
this approach, Eq. (1) could be expanded to a fourth-order pro-
jective transformation by introducing the depth z as a new
parameter of the point:

⎛
⎜⎝

x1

y1

z1

w1

⎞
⎟⎠ =

⎛
⎜⎝

h0 h1 h2 h3

h4 h5 h6 h7

h8 h9 h10 h11

h12 h13 h14 1

⎞
⎟⎠

⎛
⎜⎝

x2

y2

z2

w2

⎞
⎟⎠ (2)
The equation can be represented in a matrix form as fol-
lows:

m1 = Hm2 (3)
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here, H is a 3D projection matrix which performs a crucial
ole in the image mosaicing algorithm.

With an assumption of the existence of some correspond-
ng points in the two images, the simplest approach to
ompute 3D projection matrix is to find a matrix Hk that min-
mizes the following error function.

k =
n∑

i=0

˛i{(X(k−1)
i

− HkX
(k)
i

)
T

(X(k−1)
i

− HkX
(k)
i

)} (4)

here, pk is the error function to be minimized, X
(k−1)
i

=
x

(k−1)
i

, y
(k−1)
i

, z
(k−1)
i

, w
(k−1)
i

)
T

and X
(k)
i

= (x(k)
i

, y
(k)
i

, z
(k)
i

, w
(k)
i

)
T

are
he ith corresponding points in the two images taken at time
nstant k − 1 and k, n the number of the corresponding points
eing found within two images, and ˛i is the weight represent-

ng the degree of the correspondence.
It should be noticed that the 3D projection matrix H in

q. (3) consists of both rotational and translational compo-
ents. However, because the camera (and the platform vehicle)
oves parallel to the ground, the components in the matrix
associated with the camera rotational motion are nor-

ally very small. To separate the rotational and translational
otions of the camera, a 3D projection matrix Hk was rewrit-

en as follows:

k = TkDk (5)

here,

k =

⎡
⎢⎣

1 0 0 ıx

0 1 0 ıy

0 0 1 0
0 0 0 1

⎤
⎥⎦

s the translational matrix in which ıx and ıy represent lat-
ral and longitudinal motions of the camera, respectively. To
rovide the location information of the images in the field,
n RTK-GPS receiver, with its antenna mounted over the cam-
ra, was used to detect the translational motion of the camera
etween two images. A matrix Tk carries the rest of the infor-
ation of Hk, namely the components related to the camera

otational motion and translational GPS measurement error,
nd is represented as follows:

k = I4 + Nk (6)

here, I4 is a 4 × 4 unit matrix and Nk is a 4 × 4 error matrix
epresenting camera rotation and GPS measurement errors.

As described above, camera rotational angles are normally
mall when being installed on a ground vehicle traveling
ithin a field. By integrating Eq. (6) into Eq. (4), the error func-

ion can be reformed as follows:

k =
n∑

i=0

˛i[(X
(k−1)
i

− TkDkX
(k)
i

)
T

(X(k−1)
i

− TkDkX
(k)
i

)

+ {(Tk − I)R}T{(Tk − I)R}] (7)

here, R is a fourth-order gain vector and can be deter-
ined empirically. It should be noted that the second term
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on the right side represents the error matrix defined in
Eq. (6).

Mathematically, Tk can be determined by minimizing pk via
partially differentiating Eq. (7) as follows:

Tk =
n∑

i=0

˛i{X(k−1)
i

(X(k)
i

)
T

Dk
T + RRT}

×
[

n∑
i=0

˛i{DkX
(k)
i

(X(k)
i

)
T

Dk
T + RRT}

]−1

(8)

After all the above processes, the image projection from X
(k)
i

onto the panoramic image Y
(k)
i

can be represented in recursive
form as follows:⎧⎨
⎩

Y
(k)
i

= GkX
(k)
i

Gk = Gk−1TkDk

G0 = I4

(9)

where, Y
(k)
i

is the image of X
(k)
i

projected onto the panoramic
image coordinates. Eq. (9) indicates that stereo images are pro-
gressively projected onto the panoramic image coordinates.

2.5. Feature point tracking

To calculate a 3D projection matrix discussed in the previous
section, it is necessary to identify corresponding points in two
consecutive images. Theoretically, an ideal mosaic would be
achieved if all corresponding points were found over the two
images. However, considering the high computational load for
searching all corresponding pixels over two images and the
high risk of a large number being an incorrect match, it is more
practical to select some distinctive feature points in one image
and then search the corresponding points in another image. A
feature point detector proposed by Harris and Stephens (1988)
was used in this algorithm to detect the feature points. This
detector uses a local auto-correlation function as the detecting
operator (also known as Harris operator) to detect points with
a distinctive feature. A large Harris operator (represented by �

hereafter) suggests that there exists a large intensity variation
in the neighboring area. Naturally, feature points can often be
found at either the edge or the corner of an object. The tar-
get scenes of this research were agricultural fields with crop
canopies, weeds, dead plants, crop residues and soil surfaces
coexisting in an image frame. Such a multi-object coexistence
resulted in a wide variation of the reflected radiations in dif-
ferent spectral bands. For example, the NIR and G bands often
produced a larger � value for crop canopy pixels than that for
the R and B bands while a soil surface with dead plants caused
a larger � value in the R band than in other bands. To dis-
tribute feature points from crop canopy to soil background,
a band-specific � determination approach that calculated �

on all bands, and selected the largest � as the feature point
detection was developed. In addition, to securely distribute the

detected feature points over the image as uniformly as possi-
ble, the approach developed for feature point detection divided
an image frame into 198 square windows of 30 × 30 pixels (as
shown in Fig. 5), and the point with the largest � in a partic-
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Fig. 5 – Example of feature point tracking. Red, green and
white dots indicate the corresponding points found in the
red (channel 3 of left camera), green (channel 2 of left
camera) and NIR (channel 3 of right camera) bands,
respectively. (For interpretation of the references to color in

mately 1.5 m × 3.4 m in the field.
From the Fig. 6, it is evident that the panoramic view of the

soybean field was very well reconstructed as the seams of the
constituent images are hardly noticeable over the resulting
this figure legend, the reader is referred to the web version
of the article.)

ular window was chosen as the feature point in the window.
Supported by those two treatments, this approach could reli-
ably detect the feature points represented by different kinds
of objects with a fairly even distribution.

After feature points in a current image frame were selected,
it was also necessary to search for the corresponding points
in the preceding frame. The sum of the squared difference
(SSD) algorithm was used as the indicator to determine the
correspondence of two points (Scharstein, 1999).

Fig. 5 shows an example of the feature point tracking in a 3D
soybean field image taken by the left camera. In this figure, the
red, green and white dots indicate the corresponding points
found in the red (channel 3 of left camera), green (channel
2 of left camera) and NIR (channel 3 of right camera) bands,
respectively. A total of 99 points were tracked and successfully
distributed over the sample image, with the points in the R
band being mostly located in the soil region and the ones in G
and NIR bands occurring in the canopy area.

3. Results and discussion

3.1. Field image collection

A series of field tests were conducted at the Agricultural
Engineering Research Farm of the University of Illinois at
Urbana-Champaign. From this series of field tests, streams
of stereo images were collected while the research platform
traveled over two soybean plots on the testing field. The same
variety of soybeans was planted in both plots, but the soy-
beans in Plot 1 were planted 2 weeks after those planted in
Plot 2. Consequently, this difference in planting time resulted
in a noticeable size difference in the crops from the two plots.
On the day the field images were collected, the majority of
the crops were approximately 0.2 m and 0.5 m high on Plot 1

and Plot 2, respectively. The resolution of collected individual
stereo images was 640 × 350 pixels which covered two crop
rows 0.75 m apart. An image collection rate of 5 frames/s and
the platform traveling speed of 0.5 m/s resulted in an over-
g r i c u l t u r e 6 0 ( 2 0 0 8 ) 67–75

lapping zone of approximately 200 pixels in two consecutive
images.

3.2. Panoramic field image mosaics

Fig. 6 shows a panoramic image assembled from 12 individ-
ual multi-spectral images taken on Plot 1. This is a composite
image of channels 1 (CWL 478 nm) and 2 (537 nm) of the left
camera, and channel 3 (796 nm) of the right camera. The
research platform traveled upward in the image. The stereo
images are progressively projected onto the panoramic image
from the bottom of the image toward the top. The mosaic
process was performed off-line using the image streams col-
lected from field tests. It took about 20 s to complete a cycle of
the mosaicing process from the stereo computation to image
projection on a Windows-based PC (Pentium 4, 2.6 GHz with
2.0 GB RAM) with in-house developed software programmed
in Microsoft Visual C++. This 640 × 1460 pixels portion of
panoramic image represented a rectangle area of approxi-
Fig. 6 – A panoramic multi-spectral field image (CWL 478,
537 and 796 nm) assembled from 12 constituent images
taken at Plot 1 (with crop height of approximate 0.2 m).
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Table 2 – Summary of image projection accuracy

Image no.

0 1 2 3 4 5 6 7 8 9 10 11 Total

Overlapping
pixels

0 112,000 142,000 140,000 137,000 132,000 159,000 120,000 160,000 113,000 101,000 125,000 1445,000

RMS of gray 0 7.6 6.2 7.8 8.5 9.3 8.4 9.9 8.2 8.7 8.7 7.4 8.2
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spectral cameras with different spectral configurations; (3) a
3D virtual field was created by fusing a 3D elevation map and
panoramic field image.
level errors

anoramic image. Because Fig. 6 is a three-band composite
mage, two of which are from the left camera and one from
he right camera, the resulting panoramic image also proved
hat the images taken by two cameras could be accurately
egistered to create a six-spectral bands image.

To quantify the image projection accuracy, the gray level
rror of an overlapping pixel, defined as the gray level differ-
nce between pixels from different stereo images projected
n the same location in the panoramic image, was com-
uted as an indicator of the image projection error. The image
ecorded from channel 2 of the left camera was used for
omputing those errors. Table 2 summarizes the number of
verlapping pixels and the root-mean square (RMS) of the
alculated gray level errors. Since Image 0 was used as the
ase image to form the panoramic image, there is no over-

apping region on this image. Any other images mapped to
he panoramic image should have some overlap with the pre-
eding image(s) for forming a seamless panoramic image.
he number of overlapping pixels is roughly proportional to

he length of the overlapping region in a longitudinal direc-
ion due to the moving direction of the camera. If some
f the pixels in the mapping image were projected to a
oint where the pixels were already the projections of other

mages in previous mappings, then the gray level errors of
hose pixels should be calculated. An analysis of the calcu-
ated gray level error for Images 1–11 showed that the RMS
rror of the calculated gray levels was less than 10.0 for
ll 11 evaluated images. Such small RMS errors indicated
consistent accuracy of projection for the entire mosaic-

ng process, and they further implied that the described
mage projection algorithm was capable of consistently form-
ng a panoramic field view from the stream of stereo
mages.

Fig. 7 shows a histogram of gray level errors computed
rom all 12 images. Almost all the calculated gray level errors
ere distributed between −52 and 52. The calculated error
utliers were less than 1.2% of the total calculated errors. By
etting an error class with an error band of 5 and the min-
mal error class with an error range between −2.5 and 2.5,

total of 21 classes of error bands, with their center values
f −50, −45, . . ., 0, . . ., 45, 50, respectively, were defined. The
rror histogram appeared as a normal distribution concen-
rated mostly at the center of the error distribution bands.
umerical analysis indicated that over 60% of the gray level
rrors fell in the range of ±5, 77% within ±10, and 90%

ithin ±20.

Fig. 8 shows the mosaic image seamlessly assembled from
stereo images taken from Plot 2, where soybean plants
ere noticeably taller due to the earlier planting date. The
assembled 640 × 800 pixel panoramic image represented an
approximate 1.5 m × 1.9 m rectangle ROI in the field. The
mosaic images shown here were a panoramic field view from
the left camera (Fig. 8(a)) and an elevation map (Fig. 8(b)). A gray
level in the elevation map indicates the height of an object at
the corresponding location with a brighter pixel representing
a higher elevation. The RMS error of the gray levels calcu-
lated from the constituent images was 9.8, indicating a high
accuracy for the image projections.

One of the interesting applications for the panoramic field
imaging system proposed in this research is the creation of
a multi-spectral 3D virtual field scene. It is created by fus-
ing the panoramic field image with the corresponding field
elevation map. Fig. 9 shows examples of a 3D virtual field
from different viewpoints, created by plotting the panoramic
field image on the polygon surface of the field elevation
map presented in Fig. 8 using Microsoft DirectX technol-
ogy. This multi-spectral 3D virtual field scene could provide
comprehensive crop growth information, including the crop
size, density, weeds distribution and crop health informa-
tion.

As a result of field testing, it was confirmed that the remote
sensing system developed in this research could provide a field
image fulfilling the three objectives stated in the introduction:
(1) a field imagery created by a mosaic of the vehicle-mounted
stereo camera image stream had a seamless panoramic view
with high spatial resolution; (2) a six-spectral band image was
obtained by the stereovision camera consisting of two multi-
Fig. 7 – Histogram of gray level error for all 12 constituent
images.
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Fig. 8 – Panoramic multi-spectral field image (CWL 478, 537, and 621 nm) assembled from 7 images taken at plot 2 with an
approximate crop height of 0.4 m in two forms: (a) the panoramic image from left camera and (b) the elevation map for the
portion of the field.

Fig. 9 – Examples of 3D virtual field images with various viewpoints created from the mosaic image and elevation map.
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. Conclusions

ground-based remote sensing system that can provide a
eld image with a seamless panoramic view at high spatial
esolution, three-dimensional (3D) information of plants, and

ulti-spectral reflectance was developed in this research. The
ensor for the field sensing system was a stereovision cam-
ra composed of two multi-spectral cameras mounted on a
round vehicle. A stream of multi-spectral stereo field images
as subsequently synthesized into one seamless image. Field

est results verified that the 3D panoramic view of a soy-
ean field could be reconstructed from a stream of stereo

mages. The panoramic field image, which contained six-
pectral bands, provided a seamless view of the field. A
irtual 3D field was also created from the panoramic field
mage together with a 3D elevation map. The new ground-
ased remote sensing method developed in this research
ffered more comprehensive, informative, and thorough data
rom an entire field in terms of spectral and biophysical
eld sensing than conventional remote sensing systems.
gain, it should be pointed out that traditional remote sens-

ng systems have an advantage in terms of the size of
eld coverage; hence it would be very helpful if we could
ake corresponding advantages from both traditional method
nd this developed method in terms of the specific appli-
ations.
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